A honore di tucti magistri et scolari de questa scienza. Et de qualunqua altra bona persona vedesse et legesse questo tractato
devoto e ragionevolmente and in particular in memoriam

Joseph Needham
Nikolay Bukharin
Edgar Zilsel
Kurt Vogel
Gino Arrighi

Preface

In 1984, I was present when Joseph Needham gave a dinner talk at the Sarton Centennial Conference. During or just after the talk I whispered to the colleague sitting next to me "He does not know, but he was my only teacher in the history of science". Back whispered Samuel Edgerton - he, indeed, was the neighbour, and I hope he will forgive me for telling - "He was mine, too".

One of the things I learned from Joseph Needham's Grand Titration [1969] - recently published at the time my serious interest in the history of science began, and the first thing from his hand I read - was to take the relation between "clerks and craftsmen" seriously as a complicated interplay. Needham, of course, made no secret of having received inspiration both from Edgar Zilsel and from the Soviet contributions to the legendary 1931-conference on the history of science. When reading these, what impressed me as intellectually most sophisticated was Nikolay Bukharin's London-paper [1931/1971]. ${ }^{[1]}$

My receptivity to Needham's and Bukharin's interest in the intricate relations between theoreticians' and practitioners' knowledge was certainly enhanced by my own experience as a physics teacher in an engineering school, where I was confronted time and again with the inability of university-trained physicists and mathematicians to create a bridge between the shape of their own knowledge and the interests, orientation and knowledge of students who thought about building houses and bridges.

As I was also engaged at the times in the Danish debate about the "new math" reform, my general interest in the history of science concentrated naturally on the history of

[^0]mathematics as soon as I started doing my own work in the field - and, as it turned out, mostly on the history of pre-Modern mathematics. Along with other topics I maintained my interest in practitioners' knowledge as it could be encountered in the sources - which, when we speak of pre-Modern mathematical practice, was often only possible through teaching material directed at future practitioners or otherwise reflecting practitioners' knowledge. Though for a long time I did not work directly on late medieval European vernacular mathematics, I collected material when I encountered it - in particular source editions. Much I found in Baldassare Boncompagni's marvellous Bullettino, much I owe to Moritz Cantor and the circle around him. I also had the good luck to come in personal touch with Kurt Vogel and Gino Arrighi and to receive directly from them publications which even my excellent interlibrary service would have been unable to get hold of.

Two accidents pushed me to capitalize on this material. First, in November 1996, at a meeting at the Mathematisches Forschungsinstitut Oberwolfach, Henk Bos asked me to improvise on 43 hours notice a presentation of what had happened in the historiography of European medieval mathematics during the last forty years and to summarize the picture which now emerged. I had no support at hand beyond my memory, my personal catalogue and my own writings from the last decade, catalogue and writings as present on my laptop. None the less I accepted, maybe because of my personal affection for the organizers, maybe because I felt as absurdly flattered as the father asked by his kid to repeat a magnificent sunset - maybe for still other reasons. While working on my talk I discovered structures in the story which I had not been conscious of knowing about; during the next months I therefore set myself the goal to do the work as it should have been done, looking once more at relevant sources and publications (which for a project of this kind were also primary sources), sifting and ordering the material, etc.

The next accident was that I reread for this purpose an article which Louis Karpinski had published in 1929 about "The Italian Arithmetic and Algebra of Master Jacob of Florence, 1307". Knowing now Arabic algebra much better than I had when first reading the paper in 1977, I came to suspect that Jacopo's treatise might have astounding implications for our understanding of the origins of European vernacular algebra (the reasons for this are explained in detail in the Introduction, p. 3). The suspicion had to be verified, and I shelved my medieval survey (it remains shelved) and got hold of the manuscript Karpinski had described. Working first on the algebra section alone, afterwards on the rest of the treatise and other early abbacus writings - that is, mathematical writings made in the context of the late medieval and Renaissance scuole d'abbaco for merchant youth - I discovered that much more had to be changed in the conventional picture than I had at first suspected.

Much of abbacus mathematics was still around when I went to primary and early secondary school in the 1950s (that was before the arrival of the "new math" and the reactions to it, which to some extent changed the situation). Abbacus mathematics itself, however, can be known only by those who read Italian, since no editions of the
manuscripts are accompanied by translations. I therefore realized that any challenge to the conventional picture had to be based on a text edition accompanied by a translation and copious references to other parts of the record.

I also thought that the challenge had to be made. According to the conventional picture, abbacus mathematics is a simplified version of a great book written in Latin (Leonardo Fibonacci's Liber abbaci), adapted by less able teachers to a school with rather modest pretensions. Close scrutiny of the sources shows that interactions between different cultures at the practitioners' own level was much more important than the "great book". In a certain way, the present book thus pays a debt to the manes of Joseph Needham, Nikolay Bukharin and Edgar Zilsel.

So much about what induced me to work on the history of abbacus mathematics and to write the present book. About the book itself I shall only say that it falls into two parts of roughly equal length, one examining Jacopo's treatise together with the whole context of early abbacus mathematics, the other containing an edition of the treatise itself (made from the Vatican manuscript Vat. Lat. 4826) accompanied by a very literal translation; an appendix contains a "semi-critical" edition of a revised version of the treatise, made from Milan, Trivulziana MS 90, collated with Annalisa Simi's transcription of Florence, Riccardiana MS 2236. Details are better read from the table of contents. Indexes of names, subjects and sources referred to should facilitate the use of the book.

References are made according to the author-date system (in the case of text editions, the editor takes the place of the author). All translations into English are mine if nothing else is stated.

For many years I have been in helpful contact with Menso Folkerts, Ivo Schneider, Ulrich Rebstock, Jacques Sesiano, Barnabas Hughes, Tony Lévy and Ahmed Djebbar. Specifically for my work on abbacus matters this last decade I have also benefitted from exchanges with Warren Van Egmond, Mahdi Abdeljaouad, Wolfgang Kaunzner, Charles Burnett, Raffaella Franci, Laura Toti Rigatelli, Annalisa Simi, Enrico Giusti, Lucia Travaini, Maryvonne Spiesser, Stéphane Lamassé, Betsabé Caunedo del Potro and Maria do Céu Silva, and occasionally with many other colleagues. It is a pleasant duty to thank all of them for assistance, inspiration and challenges.

Table of Contents

Preface v
Table of Contents ix
JACOPO, HIS TREATISE, AND ABBACUS CULTURE
Introduction 3
Three Manuscripts 5
The Vatican Manuscript 6
Time, Place and Author (6); Language, Orthography, Copying Quality andWriting (7); Structure, Contents and Character (9)
The Florence and Milan Manuscripts 12
The Vatican Chapters with No Counterpart 23
The Abbacus Tradition 27
A "Fibonacci Tradition"? 30
The Livero de l'abbecho 32
Fibonacci and the Abbaco 41
The Contents of Jacopo's Tractatus 45
Ch. 1. Incipit and General Introduction 45
Ch. 2. Introduction of the Numerals and the Role of Zero 49
Ch. 3. Tabulated Writing of Numbers 50
Ch. 4. Explanation and Exemplification of the Place-value Principle 51
Ch. 5. Introduction to the Multiplication Tables 52
Ch. 6. Multiplication Tables, Including Multiples of Soldi 52
Ch. 7. Tables of Higher Squares 53
Ch. 8. Divisions a regolo 55
Ch. 9. Graphic Schemes Illustrating the Arithmetic of Fractions 58
Ch. 10. Examples Explaining the Arithmetic of Fractions 58
Ch. 11. The Rule of Three, with Examples 58
An Aside on Counterfactual Mathematics (64)
Ch. 12. Computations of Non-Compound Interest 67
Ch. 13. Problems Involving Metrological Shortcuts 68
Ch. 14. Mixed Problems, Including Partnership, Exchange and Genuine "Recreational" Problems 70
Ch. 15. Practical Geometry, with Approximate Computation of Square Roots 89
Ch. 16-19. Algebra and Quasi-Algebra, with a Non-Algebraic Intruder 100
An Aside on Arabic Algebra and Its Mixed Origin (101); Jacopo's First- and
Second-Degree Algebra (107); Rules for the Third and Fourth Degree (113);
A Grain Problem of Alloying Type (115); Wages in Geometric Progression(115)
Ch. 20. The Coin List 121
Ch. 21. Alloying Problems 125
Ch. 22. Supplementary Mixed Problems 128
General Observations 144
Algebra 147
Jacopo's Algebra 147
The Examples (149); Peculiar Methods (150); Other Idiosyncrasies (151);The Fondaco Problems (152); Abbreviations and Notation (153)
Jacopo's Possible Sources: Arabic Writings on Algebra153
The Order of the Six Cases (154); Normalization (155); Examples (155);Square Roots of Real Money (156); Commercial Calculation within Algebra(157); Jabr and Muqabalah (157); Geometric Proof (158); Polynomial Algebraand Geometric Progressions (158); Summing Up (158)
Jacopo's Possible Sources: a Look at the Next Italian Generation 159
Paolo Gherardi (161); The Lucca Manuscript (163); Trattato dell'alcibra amuchabile (163); The Parma Manuscript (164); Lines of Ancestry and Descent (166)
Maestro Dardi da Pisa 169Chapter 1: Calculating with Roots (170); Chapter 2: the Six FundamentalCases (171); Chapter 3: 194+4 Regular and Irregular Cases (173);Dependency or Independence (174)
An Instructive Fragment: Giovanni di Davizzo 176
Summing Up 180
Jacopo's Material and Influence 183
the vatican manuscript edition and translation
Edition and Translation Principles 189
The Text 193
[1. Incipit and General Introduction] 193
[2. Introduction of the Numerals and the Role of Zero] 196
[3. Tabulated Writing of Numbers, with Corresponding Roman or Semi- Roman Writings] 197
[4. Explanation and Exemplification of the Place-Value Principle] 198
[5. Introduction to the Multiplication Tables] 203
[6. Multiplication Tables, Including Multiples of soldi Expressed in libre and soldi] 203
[7. Tables of Higher Squares] 214
[8. Divisions a regolo] 220
[9. Graphic Schemes Illustrating the Arithmetic of Fractions] 228
[10. Examples Explaining the Arithmetic of Fractions] 230
[11. The Rule of Three, with Examples] 236
[12. Computations of Non-Compound Interest] 242
[13. Problems involving metrological shortcuts] 246
[14. Mixed Problems, Including Partnership, Exchange and Genuine "Recreational" Problems] 251
[15. Practical Geometry, with Approximate Computation of Square Roots] 284
[16. Rules and Examples for Algebra until the Second Degree] 304
[17. Rules without Examples for Reducible Third- and Fourth-Degree Equations] 320
[18. A Grain Problem of Alloying Type] 323
[19. Second- and Third-Degree Problems about Continued Proportions Dressed as Wage Problems and Solved without the Use of cosa-census Algebra] 325
[20. Tabulated Degrees of Fineness of Coins] 331
[21. Alloying Problems] 337
[22. Further Mixed Problems, Including Practical Geometry] 347
APPENDIX: THE REVISED VERSION, MILAN AND FLORENCE
Introduction 379
The text 383
[1. Incipit and General Introduction] 383
[2. Introduction of the Numerals and the Role of Zero] 385
[3. Tabulated Writing of Numbers, with Corresponding Roman or Semi-Roman Writings] 385
[4. Explanation and Exemplification of the Place-Value Principle] 387
[6. Multiplication Tables] 389
[7. Tables of Higher Squares and Products] 395
[8. Divisions a regolo and a danda] 408
[9. Graphic Schemes Illustrating the Arithmetic of Fractions] 415
[10. Examples Explaining the Arithmetic of Fractions] 416
[11. The Rule of Three, with Examples] 419
[12. Computations of Non-Compound Interest] 422
[13. Problems Involving Metrological Shortcuts] 423
[14. Mixed Problems, Including Partnership, Exchange and Genuine "Recreational" Problems] 426
[15. Practical Geometry, with Approximate Computation of Square Roots] 440
[20. Tabulated Degrees of Fineness of Coins] 448
[21. Alloying Problems] 452
Sigla 457
Bibliography 458
Source Index 467
Index of Personal and Geographical Names 472
Authors/Editors Appearing in the Bibliography 472
Other Personal Names 473
Geographical Locations 473
Subject Index 477

JACOPO, HIS TREATISE, AND ABBACUS CULTURE

Introduction

In [1929a], Louis Karpinski published a short description of "The Italian Arithmetic and Algebra of Master Jacob of Florence, 1307". Around one third of the note describes the algebra chapter of the treatise, pointing out among other things that Jacopo presents the algebraic "cases" in a different order than al-Khwārizmī, Abū Kāmil, and Leonardo Fibonacci, and that the examples that follow the rules also differ from those of the same predecessors. Karpinski did not mention explicitly the absence of geometric proofs of the rules, nor that the examples differ from those of the other authors already in general style, not only in detailed contents; but attentive reading of Karpinski's text and excerpts from the manuscript leave little doubt on either account.

In retrospect, Karpinski's succinct article should therefore have been a challenge to conventional thinking, both about the history of pre-Renaissance algebra and about applied arithmetic in general from the same period. Nonetheless, I have not been able to discover any echo whatsoever of his publication. This may have at least three reasons.

Firstly, 1929 fell in a period where the interest in European medieval mathematics was at a low ebb - probably the lowest since the Middle Ages, at least since 1840. From 1920 to c. 1948 (from Moritz Cantor's death to the beginning of Marshall Clagett's work in the field), the total number of scholarly publications dealing with European medieval mathematics (Latin as well as vernacular) does not go much beyond the dozen.

Secondly, the existence of the distinct abbaco ${ }^{[2]}$ mathematical tradition was not recognized, although Karpinski had already described another abbacus treatise in [1910], and Italian nineteenth-century local history had dealt with the scuole d'abbaco of many localities. As early as [1900: 166], it is true, Cantor had spoken of the existence throughout the fourteenth century of two coexisting "schools" of mathematics, one "geistlich" ("clerical", that is, universitarian), the other "weltlich oder kaufmännisch" ("secular or commercial", supposedly derived from Leonardo Fibonacci's work). Part of Cantor's basis for this was Guglielmo Libri's edition [1838: III, 302-349] of a major section of what has now been identified beyond reasonable doubt as Piero della Francesca's Trattato

[^1]d'abaco ${ }^{[3]}$ (which Cantor, accepting Libri's wrong dating, had located in the fourteenth century); also known to Cantor was the material collected and published by Baldassare Boncompagni, for instance in [1854], which, as a matter of fact, was already a sufficient basis for the claim. Georg Eneström [1906] had done what he could to make a fool of Cantor by twisting his words. ${ }^{[4]}$ Sensitive reading should have exposed Eneström's arrogant fraud; but the kind of knowledge that was required for that had come to be deemed irrelevant for historians of mathematics and hence forgotten, and George Sarton [1931: 612f] not only cites Eneström's article but embraces the whole thesis uncritically.

Thirdly, like Cantor, Karpinski took the continuity from Fibonacci onward for granted, and concluded [1929a: 177] that the
treatise by Jacob of Florence, like the similar arithmetic of Calandri, marks little advance on the arithmetic and algebra of Leonard of Pisa. The work indicates the type of problems which continued current in Italy during the thirteenth to the fifteenth and even sixteenth centuries, stimulating abler students than this Jacob to researches which bore fruit in the sixteenth century in the achievements of Scipione del Ferro, Ferrari, Tartaglia, Cardan and Bombelli.

Only those interested in manifestations of mathematical stagnation - thus Karpinski's suggestion - would gain anything from looking deeper into Jacopo's treatise.

[^2]
[^0]: ${ }^{1}$ I thus agree with I. Bernard Cohen's words as quoted by Loren Graham [1993: 241] that "Bukharin's piece remains impressive today to a degree that Hessen's is not".

[^1]: ${ }^{2}$ The late medieval sources alternate between the spellings abaco and abbaco. In order to avoid confusion with the calculation-board or -frame I shall stick to the spelling abbaco and the AngloLatin analogue abbacus (except of course in quotations, which follow the source that is quoted).

 As formulated by Richard Goldthwaite [1972: 419], "Originally the term abbaco referred to a device for calculating by means of disks, beads, counters, etc.; but in Italy after the introduction of the use of the Arabic numerals [...], the term abbaco came to be used in a general sense for instruments, methods, manuals, schools, teachers or anything else related to the skill of doing computations, especially with reference to practical applications in the mercantile world".

[^2]: ${ }^{3}$ On the identification of Libri's manuscript with the very manuscript from which Arrighi [1970a] made his edition, see [Davis 1977: 22f]. Margaret Davis also gives the argument that the anonymous treatise must indeed be ascribed to Piero.
 ${ }^{4}$ Arguing from his own blunt ignorance of the institution within which university mathematicians moved, Eneström rejected the epithet "clerical" as absurd ("Sacrobosco und Dominicus Clavasio waren meines Wissens nicht Geistliche"; actually, all university scholars were at least in lower holy orders, as evident from the familiar fact that they were submitted to canonical jurisdiction). He was further convinced that merchants' mathematics teaching would never treat useless problems like the " 100 fowls", and claimed that Fibonacci was only spoken of as a merchant in late and unreliable sources; therefore no "commercial" school could have been inspired by Fibonacci and teach such useless problems. Actually, Cantor had not argued from Fibonacci's profession, although he does refer to him elsewhere in pseudo-poetical allusions as the "learned merchant" - pp. 85f, 154; yet in the very preface to the Liber abbaci Fibonacci refers to what can hardly be anything but business travelling - in Boncompagni's edition [1857: 1] Fibonacci speaks of his travels to "places of business". What Eneström could not know is that all other manuscripts speak of travelling "for reasons of business" [Grimm 1976: 101f].

